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Abstract 
 

Software development is a constant endeavor to 
optimize qualities like performance and robustness while 
ensuring functional correctness. Architecture Description 
Languages (ADLs) form a foundation for modeling and 
analyzing functional and non-functional properties of 
software systems, but, short of programming, only the 
simulation of those models can ensure certain desired 
qualities and functionalities. 

This paper presents an adaptation to statechart 
simulation, as pioneered by David Harel. This extension 
supports architectural dynamism – the creation, 
replacement, and destruction of components. We 
distinguish between design-time dynamism, where system 
dynamics are statically proscribed (e.g., creation of a 
predefined component class in response to a trigger), and 
run-time dynamism, where the system is modified while it 
is running (e.g., replacement of a faulty component 
without shutting down the system). Our enhanced 
simulation language, with over 100 commands, is tool-
supported. 
 
1. Introduction 

 
Simulation is in common use in high-risk environments 

where a system’s failure to function correctly may result 
in loss of life or massive loss of money. Simulation allows 
the safe exploration of a proposed solution in an 
environment that shields from physical harm (e.g., combat 
simulation) and monetary harm (e.g., investment banking) 
[13]. Simulation, done during the architecture and design 
stage, is also a low cost alternative to the actual 
implementation and execution of a real system. 

Simulation languages have a long history in 
engineering; however, they are little-used in software 
engineering [4,13]. This is most unfortunate since 
“simulation can be applied in many critical areas and 
enable one to address issues before these issues become 
problems” [4]. It has become common knowledge that the 
early identification and resolution of potential problems 

can significantly reduce development time and cost, and at 
the same time increase the quality of the overall software 
product. [2] 

The emergence of architecture description languages 
(ADLs) and design languages like the Unified Modeling 
Language (UML) [3] supply software architects with a 
new range of tools to design and test the software systems 
they are building. The static nature of many of those 
models, however, limits the role they play in the software 
life cycle. Although static analyses of those models result 
in useful insights and guarantees, for some purposes static 
models are simply inadequate. Architectural models, 
however, have the potential to attain a much more central 
role as participants in the software life cycle when 
augmented with a dynamic modeling facility; i.e. a facility 
for simulating certain aspects of system behavior.  The 
architecture descriptions themselves may even be 
“reflected” in the running system! 

Our interest is not to provide a full programming 
language in which to describe the functionality of systems, 
but rather to provide just enough structure to describe the 
observable effects of system activities in terms of the 
inputs driving their behavior.  Of particular interest is the 
dynamic reconfiguration of the system architecture. 

Fortunately, some architecture description languages 
have growing support for simulation. For instance, 
Darwin/LTSA [10,11] provides a simulator for executing 
labeled transition graphs; Rapide [9] can simulate events 
for pattern-analysis purposes; Rhapsody [7] or Statemate 
[8] can be used to simulate statechart models.  

We adopted Statecharts [6] as our primary language for 
modeling behavior. Statecharts are not only used widely in 
components of the UML, but they are supported by a wide 
range of design tools. Statechart models can be used to 
depict the life-cycle of software components. In a 
graphical form they describe how components can be 
created, what kind of life stages (states) they can go 
through, and when they can be terminated. The graphical 
part of statechart model is re-enforced by a textual part 
that describes events and conditions that cause state 
changes as well as activities that can be performed in 
response to those state changes. 
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Our intention is to leverage people’s familiarity with 
Statecharts and use them as an adjunct to an ADL model 
to simulate the behavior of component-based systems, 
where each component is modeled via a set of Statechart 
diagrams.  Hence, the interactions of the components can 
be simulated via the interactions of their respective 
Statechart diagrams. To model aspects of architectural 
dynamism, Statecharts’ extension, Rhapsody currently 
provides for describing simple changes components may 
undergo, viz. they may be created or destroyed.  We call 
the use of Statecharts for reasoning at this level, design-
time dynamism (e.g. understanding that component A may 
create zero to many components of type B over time) 

Our model augments Statecharts with a more detailed 
language for action description and a dynamic simulation 
tool that can incorporate such models after the system has 
already done some simulation.  Such augmentations are 
useful in order to model more fully activities such as 
upgrading components or dynamic replacement with a 
new version of a component, where the simulated 
behavior is not necessarily consistent with the previously 
observed behavior.  Currently Statecharts can be used to 
simulate simple architectural changes, but not such 
changes in the behavioral descriptions of the components. 
We call these modeling aspects run-time dynamism 
because such dynamism occurs outside the scope of the 
design; for example, a new version of component A that 
was not available during design time needs to replace the 
old component without shutting down the system. 
Summarizing, modeling component-based software 
systems requires the modeling of design-time and run-time 
component dynamism. 

Component dynamism is very important since it 
provides a means for dealing with the instabilities and 
fluctuations of today’s software market, where it is often 
financially impossible to shut down software systems to 
perform upgrades or repair defects.  In case of software in 
mission critical systems (e.g., supporting space 
exploration, combat, and communications) it is 
unreasonable to simply “stop” to make changes. This need 
requires software components to be adaptable to dynamic 
changes; even unforeseen ones. This need also requires 
new simulators to test the fitness of those software 
components to handle these dynamic changes. 

To simulate statechart models, a number of very 
powerful commercial statechart simulators are available, 
Matlab [12], Statemate [8], Rhapsody [7], to name a few. 
We have found that those simulators are ill-equipped to 
handle the new challenges imposed by component 
dynamism. For instance, Statemate and Matlab require 
precise knowledge of what components exist during 
design-time leaving no room for component dynamism.  
Even tools like Rhapsody, having some support for 
design-time dynamism via object diagrams [3], is of little 
use in addressing most forms of run-time dynamism and 

some forms of design-time dynamism. Also, Rhapsody’s 
dependence on object diagrams makes it less suitable for 
its integration with architectural description languages in 
general. See Related Work for a more detailed discussion 
of these and other tools. 

In the following, we will present an adaptation to 
Harel’s Statechart language to support component 
dynamism. We do this without restricting state charts to a 
particular modeling style or process. Our extensions are 
self-contained and embedded in the graphical and textual 
representation of Statechart models (states, transitions, 
guards, actions); they primary enrich the language of how 
guards, triggers, and actions are expressed but leave the 
basic notation of Statecharts intact. We refer to our 
language as the Statecharts for Dynamic Systems 
Language (SDSL). The SDSL is fully tool-supported 
providing software architects with a rich language of over 
100 commands to model component dynamism. 

 
2. New Television Example 
 

In this paper, we will show how our simulator can be 
used to imitate various levels of component dynamism. To 
this end, we will make use of a so-called New Television 
example (NTV) to illustrate our work. NTV is a virtual 
television for PCs. This (hypothetical) NTV system has 
three major software component types: client components, 
server components, and streamer components. Clients can 
be downloaded over the web and started up in the users’ 
workstations. The clients (also “NTVClient”) have an 
interface for selecting available movies, which, upon the 
discretion of the user, will request the server to stream that 
movie to the client. Interacting with the client is a central 
server component. The server waits for movie requests 
from clients and, upon receipt of such requests, 
instantiates streamer components to handle the streaming 
of movies to their respective clients. Each client gets 
exactly one streamer for every movie it requests and no 
streamer is used for more than one client.  Figure 1 
represents the logical architecture of the NTV example, 
where client and streamer components are dynamically 
created, i.e. the Server creating the Streamers. 

The NTV example uses design-time and run-time 
dynamism. During design-time it is defined that clients 

ServerClient

Streamer
data flow
control flow

0..many

0..many 1

 
Figure 1. Logical Architecture of the NTV Example 



may be instantiated at any time by any number of users. 
There is only one server, however, it must instantiate 
streamer components in response to user selections 
(simulating component construction and destruction). The 
example will also show that run-time dynamism is needed 
to upgrade and improve the NTV system, activities that 
were only partially foreseen during design time. For 
instance, we will postulate that the streamer component 
has a flaw, which can be mended through a simple fix. We 
will then simulate how the new version of that streamer 
(with the fix) can be instantiated by the server without the 
need to shut down the server (simulating component 
independence). The example will also demonstrate the 
ability to deal with a flaw in the server; this will require 
simulating the creation of a new version of the server to 
replace the old one without affecting currently running 
clients and their streamers (i.e., simulating late binding of 
clients to the server). We will show how simulated clients 
cope with the temporary lack of a simulated server to 
communicate with (i.e., simulation of replacement) and 
how simulated clients can locate the new simulated server 
although it is a different software component (i.e., 
simulation of component localization).  

Although all these forms of dynamism should be able 
to be tested before the actual system is built, such 
simulations can be useful for reasoning about previously 
fielded systems as well. Our simulation language and its 
tool support provide software architects with the 
capability to reason about such concerns throughout the 
system’s lifetime. 

 
3. Dynamism in SDSL 
 

The NTV example uses a variety of component 
dynamism concepts. The simplest one is simulating 
component creation and destruction. For instance, the 
server creates a new streamer every time a client makes a 
movie request. Likewise, the streamer is destroyed after 
the client is finished or a timeout occurs. 

Simulating component localization is another aspect of 
component dynamism where one component may know 
about the location of a component but not have a handle 
on it (reference). Unique ids (e.g. GUIDs in COM, URLs 
on the Web) may be used to locate such components. For 
example, clients in our NTV example use the unique name 
“ntv.com” to locate the server component before making 
requests. 

Simulating component independence imitates, in state 
charts, the unawareness of components of the existence of 
neighboring components as is normal in ADLs. The NTV 
example uses “late binding” to enable component 
independency. For instance, the client component 
searchers for the current instance of the server before 
making requests. 

Simulating component communication is of particular 
interest for component dynamism. Since components tend 
to be independent, asynchronous communication methods 
like trigger calls need to be supported. Using triggers to 
communicate between state machines was already part of 
Harel’s definition (a state machine is an simulating 
statechart). However, in order to support component 
independence, the concept of triggers had to be extended.  

Simulating component replacement is among the most 
useful features of component dynamism. Due to the 
independence of components, one or more components 
may be destroyed or instantiated at any time. Naturally, 
such actions may have undesirable side effects on the 
entirety of a software system; hence, it is necessary to 
simulate before doing it. The NTV example will 
demonstrate two different types of run-time component 
replacement where first a faulty streamer is upgraded and 
second the server itself is upgraded. The replacement of 
the streamer component will show that only new client 
requests will benefit from the new steamer. Currently 
running streamers will not be replaced. The replacement 
of the server, however, replaces a currently running 
component. Simulating the effects of this replacement on 
already running clients is therefore important in evaluating 
the fitness of the clients and the system. 
 
4. Using the SDSL Language 
 

This section introduces the Statecharts for Dynamic 
Systems Language (SDSL) in the context of the NTV 
example. Special considerations will be given to those 
parts of the SDSL that are dynamism-specific. The SDSL, 
has over 100 keywords and symbols and supports an equal 
number of commands. In order to reduce the effort 
required to learn the SDSL, we modeled our language 
after Harel’s initial Statechart definition and also adopted 
OCL expression language constructs [15] wherever 
possible (e.g., collection types and access methods). 

Harel’s Statechart definitions describe a set of 
(partially) independent states. Each state is either 
composite or simple; in the diagrams, composite states are 
named in the upper left-hand corner of rounded rectangles 
containing their sub-states.  Additionally each composite 
state has a start state, indicated as a dark dot in the 
diagrams and an end state, indicated with a circle.    

With each state entry, exit, and during actions may be 
associated. We have extended Harel’s language for 
defining these actions by incorporating OCL constructs to 
allow variable declaration and assignment, as discussed 
within the example state descriptions below.  Harel further 
defined that with each transition an event that triggers the 
transition may be specified, a guard expression that either 
filters the triggered events or when used on its own, is 
continuously evaluated and acts as a trigger itself when it 



becomes true.  An action may be associated with the 
transition as well.  Triggered events are named and can be 
parameterized.  They are explicitly triggered in actions 
referring to the statemachine in which the trigger should 
be applied, viz. statemachine.trigger event(parameters). 
Asynchronous events arising at the volition of the user are 
preceded by a question mark. 

Ideally, the state machine execution model would 
mimic real-world behavior as manifested in 
synchronization mechanisms like Corba and DCOM, but 
mimic it in a reproducible way!  Presently, the execution 
model is to sequentially consider each state machine in 
turn, determining whether any transition can be made.  
Each of its queued events is considered before any guards 
are evaluated.  Execution of a transition entails first, the 
execution of any exit action from the state being left, then 
execution of any action associated with the transition, and 
finally, execution of the entry action of the state 
transitioned into. This sequence is all done as an atomic 
activity during which no other transitions occur.  
Moreover, any events the actions signal are queued on the 
relevant state machines' queues.  However, the actions' 
effects on variables are immediate during execution 
(unlike in Harel's model).  In the future we intend to 
replace this "round robin" form of synchronization of the 
machines with something more realistic. 
 
4.1. The Client 

 
Upon construction (CONSTRUCT), the client is in the 

simple state selecting of the composite state ready of ntv 

(Figure 2). Notice that the local variables server and 
streamer are defined and initialized.  Once the user 
chooses to select a movie (?SELECTCHANNEL), the 
client locates the server while still in the selecting state via 
its unique name, “ntv.com.” Thereafter (after entry into 
the loading state), the client sends the event 
ADDSTREAMER to the server and passes 
(communicates) a reference to itself as a parameter. Once 
the client is in the loading state, three scenarios may 
happen: (1) the client receives the response event 
CONFIRM_ADDSTREAMER from the server side, (2) 
the user chooses to cancel the current selection 
(?CANCEL), or (3) a time out occurs after 10 seconds. If 
the server responds in time (option 1), the server also 
passes along a handle to the streamer it created. At this 
point the client is ready to receive a streaming movie. The 
user events ?PLAY and ?STOP may be used to start and 
stop the movie resulting is the corresponding actions 
STREAM() and WAIT() to be sent to the streamer 
component. The user may also cancel the streaming 
(option 2) of the movie at any time (?CANCEL) resulting 
in a REMOVESTREAMER(self) event to the server. The 
client then waits for a response from the server 
(CONFIRM_REMOVESTREAMER()) or, if none occurs, 
the termination will time out ([self.time > 10000]2). 

 
 
 

                                                 
2 self refers to the current state machine and self.time refers to 
the time elapsed since that state machine last transitioned. 

Server?SELECTCHANNEL

CONFIRM_ADDSTREAMER(streamer)

[self.time > 10000] ?CANCEL

CONSTRUCT()

[true]
?START

CONFIRM_REMOVESTREAMER()
?CANCEL

?PLAY [not streamer.isTerminated]DESTRUCT()

?END
?STOP

ntv
ready
/entry:
   var statemachine server:=null;
   var statemachine streamer:=null;

set

loading
/entry:
   server.trigger ADDSTREAMER(self);

selecting
/exit:
   server:=statemachine("ntv.com");

error
/entry: write "error";

terminating
/entry:
   server.trigger REMOVESTREAMER(self);
   streamer:=null;

go
stopped
/entry:
   streamer.trigger WAIT();

playing
/entry:
    streamer.trigger STREAM();

 
Figure 2. Statechart Model for Client Component. Uses component communication (e.g., “server.trigger 

ADDSTREAMER(self)”) and component localization (“statemachine(“ntv.com”)”) 



4.2. The Server 
 

The server component (Figure 3) consists of only three 
states. Upon construction, the server defines a set of 
variables, initializes the streamers variable (of type 
sequence) to an empty sequence (set, bag and sequence 
are the most basic collection types supported by our 
language), and gives the server the unique name 
“ntv.com.” The [true] transition indicates that the server 
will automatically transition to the idle state once all 
initializations have been completed. In the idle state, the 
server waits for either one of two events. If it receives an 
ADDSTREAMER event, a series of statements are 
executed. The first statement searches for already existing 
streamer components for that client. If one is found 
(second statement), the existing streamer is destroyed3 
(DESTRUCT) and removed from the collection of 
streamers. Finally, the server creates a new streamer 
component of type “StreamerV1.” If the server receives a 
REMOVESTREAMER event, a similar set of statements 
is executed to destroy the current streamer supporting the 
given client. Upon destruction of the server, all streamers 
are destroyed. In order to enable a shutdown of the server 
component without interrupting current streaming 

                                                 
3 There can be at most one. 

components (e.g., for 
maintenance), the 
FORCE_DESTRUCT 
event is provided. 

Note that the type 
name of the streamer is 
variable, viz. the value of 
streamerType. This 
makes it possible to 
support dynamic run-
time upgrades of 
streamers where it is 
unknown during design-
time what that streamer’s 
name will be. Variable 
component type names 
are another means for 
simulating late binding. 
Also note that the server 
uses the setQualifier 
command to define a 
unique name for itself. 
This command simulates 
the registration of a 
component in a 
component database (i.e., 
much like what COM or 
CORBA components 
do). If the setQualifier 

command is not used, an automatic ID will be generated.  
The server also makes use of collection types. For 

instance, the variable streamers is defined as a collection 
of type sequence. A sequence is essentially an array where 
items like integers, strings, and even state machines can be 
stored. Collection types support design-time dynamism 
since they allow variable numbers of components to be 
defined during runtime. As such, at any given time the 
server may support zero, one, or many streamers. 
Collection types can be used to keep track of groups of 
statemachines. Commands available to perform operations 
on statemachines include tests for validity, initialization 
and termination. Furthermore, a series of OCL 
expressions, like select, forAll, or iterate can be used to 
perform collection operations. For instance, the action 
associated with the ADDSTREAMER event uses the 
select command to find state machines in the streamers 
collection that have a given terminal variable equal to the 
client. 

The server is also the first component to directly 
construct and destruct components. The command “new 
streamerType(terminal)” creates a new instance of 
component type “StreamerV1.” Note that here a variable 
contained the component type. If such late binding is not 
desired, the command “new “ServerV1”()” could be used.  

CONSTRUCT()

[true]

FORCE_DESTRUCT()

DESTRUCT()

[true]

startup
/entry: streamers := sequence{};

idle

ADDSTREAMER(statemachine client)
/ list := streamers->select(statemachine s | s.client=client)->asSet;
  if (list->size > 0) {
     list->at(0).trigger DESTRUCT();
     streamers->excluding(list->at(0));
  }
  streamers->including(new streamerType(client));

REMOVESTREAMER(statemachine client)
/ list:=streamers->select(statemachine s | s.client=client)->asSet;

  if (list->size > 0) {
      list->at(0).trigger DESTRUCT();
      streamers->excluding(list->at(0));
  }

server
/entry:
   setQualifier("ntv.com");
   var sequence streamers;
   var statemachine streamer;
   var integer index;
   var set list;
   var string streamerType:="StreamerV1";

shutdown
/entry:
  while (streamers->size > 0) {
     streamers->at(0).trigger DESTRUCT();
     streamers->removeAt(0);
  }

 
Figure 3. Statechart Model for Server Component. Uses component construction and 

destruction (e.g., “new streamerType(terminal)”) and collection variable to handle large sets of 
potentially unknown types of depending state machines (e.g., “var sequence streamers”).  



As we shall see, this would be at the expense of flexibility 
should use of a new streamer type become desirable. 
 
4.3. The Streamer 
 

The server constructs a new streamer component 
(Figure 4) for every client that requests one. The 
CONSTRUCT event4 passes the handle of the client, 
which gets stored in the variable client in the streamer 
component. In the initializing state, the streamer then 
sends the notification event 
CONFIRM_ADDSTREAMER(self) to the client with a 
handle of itself as a parameter. The streamer then uses the 
WAIT() and STREAM() events to send movie data to its 
client upon request. During destruction, the streamer 
sends a CONFIRM_REMOVESTREAMER notification 
to the client. 
 
5. Run-Time Dynamism in SDSL 
 

Thus, far we have primarily demonstrated how our 
extensions to the statechart language can handle design-
time dynamism – that is the kinds of dynamism that are 
predicted during design time to occur while the system is 
running. This section discusses how more advanced run-
time dynamism can be simulated via our language.  Again, 
these entail changing the state machines under which the 

                                                 
4 Note that the construct event is implicitly sent to the new state 
machine with the “new” command. This guarantees that it is the 
first event that component receives. 

components operate at run time. We will demonstrate how 
changes to the running system can be simulated, in 
particular, the replacement of a faulty server component 
without shutting down the entire system. For the following 
scenarios we assume that the NTV system is operational 
with one server, many clients, and many streamers 
running. 

 
5.1 Introducing a New Streamer Version 

 
Imagine that during operation, the designers discover a 

flaw that was unforeseen at design-time. When the client 
sends the ADDSTREAMER event to the server, the server 
creates a streamer and that streamer, in turn, sends a 
CONFIRM_ADDSTREAMER notification event back to 
the client. Under normal circumstances, the server can do 
this within a ten second period; however, in rare cases it 
may happen that the client times out ([time>10000] 
causing an error message to be displayed on the client 
side, followed by the termination of the selection. This 
may cause problems if the streamer is not aware of the 
timeout of the client and continues to wait for a client 
response. For the streamer, this constitutes a deadlock 
since the streamer itself never times out. A simple timeout 
fix is thus added to the streamer component, resulting in a 
new streamer version. 

Fixing the timeout condition on the streamer is, 
however, only half the solution. The server still needs to 
use the new, changed version of the streamer.  But since 
many clients are using the server, this re-configuration 
needs to be done during run-time without shutting down 
the server. One way to do this is to leave it variable on the 
server side what the streamer type name is. Instead of 
creating a pre-defined streamer, the server instead tries to 
locate a component definition with a given name (e.g., 
like COM names). Our simulator supports this via 
variable names for statemachines. This makes it possible 
to simulate how the running server, clients, and streamers 
react if a new streamer type is introduced. Since the server 
already supports a streamer type variable (as predicted 
during design time), updating that variable is simply 
accomplished by executing the command 
statemachine(“ntv.com”).streamerType:=”StreamerV2.” 
This command needs to be executed by the process 
responsible for the creation of the server.  This will either 
be executed manually (e.g., via a server command 
interface supported by an equivalent command interface 
provided by our statechart simulator) or automatically by 
another component (e.g., a server user interface 
component). Our simulator supports both forms of access 
to the server. 

The effect of this server re-configuration, which occurs 
during run time, is that new client requests will result in 
the server instantiating a streamer with the new 

CONSTRUCT(client)

WAIT()

STREAM()

WAIT()

STREAM()

initializing
/entry:
   client.trigger CONFIRM_ADDSTREAMER(self);

waiting

streaming

streamer
/entry:
   var statemachine client;

DESTRUCT()
/ client.trigger

      CONFIRM_REMOVESTREAMER();

 
Figure 4. State chart for Streamer Component 



component type. It can then be simulated whether already 
running clients as well as newly created clients can handle 
the new streamer – a vital test before a similar streamer 
upgrade is performed on the real system with potentially 
disastrous consequences. 

 
5.2 Replacing the Active Server 

 
Now imagine that after the streamer fix, the designers 

discover another flaw that only becomes obvious after 
long execution times. Whenever the server adds a new 
streamer (after the ADDSTREAMER request), that 
streamer is also added to the collection variable 
streamers. Only the REMOVESTREAMER event causes 
that entry to be deleted from the streamers variable, 
causing problems whenever the client does not properly 
shut down and thus does not send a 
REMOVESTREAMER request. In itself this is not a 
problem because a new ADDSTREAMER request will 
automatically terminate an older running streamer for that 
same client. The designers, however, did not foresee that 
their client component would be downloaded in large 
numbers, resulting in users that only use it once or a few 
times. If a client then does not properly shut down, the 
server will keep a reference to its streamer indefinitely 
(although the streamer itself may have shut down because 
of our prior bug fix). This results in a gradual performance 
problem as time passes, causing periodic shutdowns of the 
server. The server therefore needs a cleanup feature that 
periodically removes old streamer entries. Figure 5 shows 
the necessary modifications required in black (grey items 
overlap with Figure 3). Again, we are faced with the 
challenge of making that change as the system is running. 
A potentially large number of people may be using the 
NTV service and it is unreasonable to assume that every 

client needs to be upgraded to recognize 
the new server. Our simulator can thus be 
used to simulate such a run-time swapping 
of components and the effect this may 
have on other running components. The 
way other clients are aware of the server 
component is via its unique name 
(“ntv.com”). That unique name is 
originally assigned automatically but was 
altered by the server state machine via the 
setQualifier command. To exchange the 
old server with the new server, we only 
need to issue a FORCE_DESTRUCT() 
command to the old server (e.g., 
‘statemachine(“ntv.com”).trigger 
FORCE_DESTRUCT()’) followed by a 
startup command for the new server (e.g., 
‘new “NewServer”()’). The new server 
will register itself as the new “ntv.com” 

server, making it available to all currently running clients 
as well as old clients 

The simulated swapping of the server components can 
again be used to test how clients and streamers react with 
a brief absence of the server. For instance, prior to the 
“real” swapping of the servers, it is important to test 
whether running clients (in whatever states they may be) 
will continue to be able to interact with the server. 
Designers can also use our simulator to test whether the 
client timeout features work properly when the old server 
is down and before the new one is started up. 

 
6. Tool Support 
 

SDSL is supported with a simulation environment we 
call SDS (Simulator for Dynamic Statecharts).  SDS (see 
Figure 6) provides for design and specification of state 
charts by integration with Stateflow from Mathworks and 
the PPDE from Teknowledge, which act as state chart 
drawing tools. The bottom, left pane of the figure 
illustrates a window onto Stateflow. 

Our simulator extracts state chart descriptions from the 
respective drawing tools and gives the architect the option 
to decide which state charts to simulate (usually only a 
few in the beginning since state machines can instantiate 
needed components themselves).   In the figure 
NTVClients 2, 5 and 9 have been created. 

Our simulator provides a graphical user interface to 
running state machines. The graphical interface is 
primarily meant to support user interactions. The 
graphical interface thus becomes the simulated “user 
interface” for all running state machines (the source of 
events beginning with “?”). For instance, where the actual 
client application is expected to have a user interface that 
allows users to select movies and to start and stop those 

server
...

[true]

FORCE_DESTRUCT()

idle

ADDSTREAMER(statemachine client)

  if (list->size > 0) {
     list->at(0).trigger DESTRUCT();
     streamers->excluding(list->at(0));
  }
  streamers->including(new streamerType...

REMOVESTREAMER(statemachine client

  if (list->size > 0) {
      list->at(0).trigger DESTRUCT();
      streamers->excluding(list->at(0));
  }

[self.time>cleanupTime]
/  index := 0;
   while (streamers->size < index) {
      streamer:=streamers->at(index);
      if (streamer.terminal.isTerminated)
         streamers->removeAt(index);
      else
         index:=index+1;
   }

DESTRUCT()

/ list := streamers->select(statemachine...

/ list := streamers->select(statemachine...

 
Figure 5. Statechart Model of New Server (upgrade) . Uses time condition 

to cause cleanup transition.  



movies, an interface to SDS allows the user to simulate 
these inputs (e.g., ?PLAY).  These are entered through the 
“User Selection” window, the top, left window in Figure 
6. 

In addition to allowing users to cause events, our 
simulated user interface also displays the current states of 
all running state machines (top, middle window), their 
recent event history (top, right window), and error 
messages (middle, left window), should some illegal 
command have been encountered. The user interface also 
display messages that have been created as part of actions. 
For instance, our language supports the “write” command 
that may be used to display any text or variable contents.  
This information appears in a separate window (not 
displayed) or , if a state machine window is open, the 
message  is displayed there. 

Our simulator also provides a textual interface for 
running state machines. (See the bottom part of the 
bottom, right window in Figure 6.)  A textual interface is 
provided for every state machine separately (the whole 
bottom, right window). It can be used for everything the 
graphical interface is used for and more. It provides direct 
and full access to the SDSL interpreter, allowing 
architects to create, modify, or delete anything they wish.  

Notice the history of activity in that window displayed as 
the largest bulk of text in the bottom, right window. These 
activities reflect commands that were manually entered by 
the user. Other state machine-specific information 
displayed in the textual interfaceare the current state, the 
available transitions from that state, and a running history 
of the state changes the machine has undergone.  We 
found the textual interface to be invaluable for simulating 
“special cases of component dynamism,” e.g., the sudden 
destruction of a simulated component (e.g., the server) to 
observe the impact this has on any other simulated 
component. 

 
7. Related Work 
 

The key idea that separates our work from other ADL 
and statechart simulation research is that we allow new 
models to be incorporated in a simulation during the 
running of the simulation itself.  Nonetheless, we have 
certainly built on the ideas of others  There are two major 
emphases of this research: architecture dynamism and 
statechart-based modeling. 

In general we are interested in using other people’s 
systems (COTS) wherever possible while avoiding over 

 
Figure 6. Screen Snapshots of SDS Tool showing an ongoing NTV Simulation, Matlab Stateflow for Drawing, and 

the Command Line Interface. The command line interface shows the history of recent commands that were entered 
manually; i.e., “write streamers” which returns the contents of the variable streamers.The command interface allows users 

to directly access the SDS interpreter to create, modify, or destruct artifacts.  



commitment to supporting formalisms.  For these reasons 
we chose to adapt Matlab and Stateflow as our input 
mechanism for state charts.  In addition, we tried to keep 
as much of the Statemate semantic framework as possible, 
while extracting the means for expressing simulations 
from the UML-based class diagrams required by 
Rhapsody, an extension to Statemate for expressing 
simulations. 

We specifically wanted to avoid using knowledge 
about component interactions during design time because 
we feel it proscribes component dynamism too much.  
Indeed, Rhapsody incorporates design-time dynamism 
constructs.  Its limitations for our purposes are that: it is 
limited to a single modeling language (object models) and 
it is not understandable and useable alone (one cannot 
understand the statechart model without also looking at 
the object model). Its integration with object models 
makes it a suitable candidate to model dynamism in the 
context of UML; however, architecture description 
language and many other design languages do not use 
object models.   

Even in cases where ADLs have been successfully 
mapped to UML (e.g., C2 [14] to object model mapping) 
[1] this mapping also changed the meaning of those 
objects (that is a main reason why stereotypes were used). 
For instance, in C2 one component is not aware of any 
components next to it and thus cannot refer to it directly 
by name. An object model representing a C2 component 
model thus cannot make use of Rhapsody’s statechart 
simulation capabilities.. 

Two ADLs that have stressed the ability to describe 
dynamism require some mention.  First, the event-based 
model of Rapide [9] has been used to describe 
architectural components and the events they are 
exchanging. Its tool suite can then be used to analyze 
event patterns to identify potential problems (e.g., an 
invalid causality relationship).  

Again, although we are unaware of any other efforts to 
provide run-time (model) dynamism, Rapide supports 
various forms of design-time dynamism, including the 
creation of components dynamically.  In fact, the use of 
Rapide for dynamic modeling purposes is additionally 
hampered by its tight links to the rest of Rapide; this is 
much the same criticism as we have for Rhapsody as well. 

A second ADL used to describe dynamic effects is 
Darwin [11]. The language is certainly of a kindred spirit 
in that it specifies what services are provided and what 
services are needed for each component.  The language is 
unique for proscribing structural dynamism, by emphasis 
on lazy binding of (potentially unbounded) recursive 
structures and, as with both Rhapsody and Rapide, direct 
dynamic instantiation.  Darwin is not event-based, and is 
incapable of modeling change to as fine a grain size as 
statecharts. 
 

8. Future Work 
 

Of course our criticisms of other work do have their 
flip side.  It may be argued that both Rapide’s and 
Darwin’s models are more declarative than the state chart 
models we have adopted.  This makes them more 
amenable to static analysis, which of course aids 
predictability when the system can be guaranteed to 
adhere to the implied design principles as it evolves.  Our 
specifications are somewhat less general than a full 
programming language, but the ability to analyze them is 
certainly limited, especially with the potential for run-time 
dynamism and concurrency (the specifications are not 
closed in any sense, so there are few opportunities for 
preanalysis). We imagine a continuum of modeling 
technologies that will be useful in analyzing, simulating, 
and realizing systems on architecture description-based 
designs. 

Our future work will in part involve just these 
concerns.  We want to integrate with less dynamic 
languages for expressing the more static design constraints 
which we can rely on even during run-time changes. 
Hence, we want to integrate our model with a variety of 
concrete ADLs, by extension.  We will start with Acme 
[5], of course, because of the potential leverage to other 
ADLs via interchange with it.   

Along the same lines, there are analyses that could be 
done on the state chart specifications that extract what 
information we do require that a different implementation 
of a component must provide.  Although we claim to 
espouse no particular object model, in fairness, there is a 
sense in which we build the part of the object model we 
need into the vars of the states, or more accurately, into 
other state charts’ knowledge of these vars. In particular, 
we know which triggers it must be able to react to 
(including those from the user, sometimes); we know 
which of its state variables are relied on by other state 
machines.  And we know what triggers it raises, although 
responsibility for raising these could conceivably be taken 
on by other component (models) after dynamic 
modification.  All of these could be used to constrain 
future modification to the system. 

Finally, there are situations where exactly the same 
abilities to change the model at run-time occur; we want to 
study what ways these contexts could affect the modeling 
constructs and tools we provide.  We have already 
mentioned the simulation of in-place critical software 
systems such as space or combat missions.  Another 
scenario involves systems that monitor their own health 
and status in order to determine whether to reallocate 
resources or raise warnings when situations change or 
deteriorate, respectively.  Such systems are being studied 
in the DASADA program at DARPA.  The use of such 
“reflective” capabilities to detect a system’s deviations 



from its model – a simulation whose inputs are the real 
stimuli to which the system is reacting – is certain to 
modify our modeling concepts in some ways in the future. 

 
 
9. Conclusions 
 

Component-based development emphasizes the 
individual nature of components, the services they provide 
and the services they need. The increasing use of 
commercial off the shelf (COTS) components aggravate 
this. Modeling software components thus needs to take 
into account situations like the independence of software 
components, the uncertainty of the existence of other 
components around it and the ability of being replaceable 
by another component (or set of components). that 
provides the same services  

We have presented a simulation language based of 
Harel’s Statemate definition that supports a wide array of 
design-time and run-time dynamism concepts. Harel’s 
statechart language has been extended to support 
component construction, destruction, localization, storing, 
accessing, and communication.  

Current statechart modeling techniques are ill-equipped 
to deal with component dynamism in which the behavioral 
model changes. In fact, most currently available statechart 
simulators do not even support design-time dynamism, 
however, none is capable of supporting run-time 
dynamism in the fashion described above. 
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